Inferring the eigenvalues of covariance matricesfrom limited , noisy

نویسندگان

  • Richard Everson
  • Stephen Roberts
چکیده

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein which characterise the eigenvalue spectrum of the noise covariance matrix and inequalities between the eigenvalues of Hermitian matrices are used to infer probability densities for the eigenvalues of the noise-free covariance matrix, using Bayesian inference. Posterior densities for each eigenvalue are obtained, which yield error estimates. The evidence framework gives estimates of the noise variance and permits model order selection by estimating the rank of the covariance matrix. The method is illustrated with numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring the eigenvalues of covariance matrices from limited, noisy data

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually, the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein, which characterize the eigenvalue spectrum of the noise covariance matrix, and...

متن کامل

Statistical eigen-inference from large Wishart matrices

The asymptotic behavior of the eigenvalues of a sample covariance matrix is described when the observations are from a zero mean multivariate (real or complex) normal distribution whose covariance matrix has population eigenvalues of arbitrary multiplicity. In particular, the asymptotic normality of the fluctuation in the trace of powers of the sample covariance matrix from the limiting quantit...

متن کامل

The empirical properties of large covariance matrices

The salient properties of large empirical covariance and correlation matrices are studied for three datasets of size 54, 55 and 330. The covariance is defined as a simple cross product of the returns, with weights that decay logarithmically slowly. The key general properties of the covariance matrices are the following. The spectrum of the covariance is very static, except for the top three to ...

متن کامل

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

Robust Estimation of Distribution by Shrinkage Technique

Most pattern recognition applications require the eigenvalues and eigenvectors of the covariance matrix. It is well known that when the number of training samples is small, the eigenvalues of the covariance matrix contains bias, and the bias degrades recognition performance. There are some methods which ignore the small eigenvalues, or acquire better estimates of the covariance matrix by correc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998